O ct 2 00 1 Strongly - cyclic branched coverings of ( 1 , 1 ) - knots and cyclic presentations of groups ∗

نویسندگان

  • Alessia Cattabriga
  • Michele Mulazzani
چکیده

We study the connections among the mapping class group of the twice punctured torus, the cyclic branched coverings of (1, 1)-knots and the cyclic presentations of groups. We give the necessary and sufficient conditions for the existence and uniqueness of the n-fold stronglycyclic branched coverings of (1, 1)-knots, through the elements of the mapping class group. We prove that every n-fold strongly-cyclic branched covering of a (1, 1)-knot admits a cyclic presentation for the fundamental group, arising from a Heegaard splitting of genus n. Moreover, we give an algorithm to produce the cyclic presentation and illustrate it in the case of cyclic branched coverings of torus knots of type (k, hk ± 1). Mathematics Subject Classification 2000: Primary 57M05, 57M12, 20F38; Secondary 57M25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly-cyclic branched coverings of (1,1)-knots and cyclic presentations of groups

We study the connections among the mapping class group of the twice punctured torus, the cyclic branched coverings of (1, 1)-knots and the cyclic presentations of groups. We give the necessary and sufficient conditions for the existence and uniqueness of the n-fold stronglycyclic branched coverings of (1, 1)-knots, through the elements of the mapping class group. We prove that every n-fold stro...

متن کامل

STRONGLY-CYCLIC BRANCHED COVERINGS OF KNOTS VIA (g, 1)-DECOMPOSITIONS

Strongly-cyclic branched coverings of knots are studied by using their (g, 1)-decompositions. Necessary and sufficient conditions for the existence and uniqueness of such coverings are obtained. It is also shown that their fundamental groups admit geometric g-words cyclic presentations.

متن کامل

Se p 20 01 Cyclic presentations of groups and branched cyclic coverings of ( 1 , 1

In this paper we study the connections between cyclic presentations of groups and branched cyclic coverings of (1, 1)-knots. In particular , we prove that every n-fold strongly-cyclic branched covering of a (1, 1)-knot admits a cyclic presentation for the fundamental group encoded by a Heegaard diagram of genus n.

متن کامل

3 0 Ju l 2 00 2 ( 1 , 1 ) - knots via the mapping class group of the twice punctured torus

We develop an algebraic representation for (1, 1)-knots using the mapping class group of the twice punctured torus MCG2(T ). We prove that every (1, 1)-knot in a lens space L(p, q) can be represented by the composition of an element of a certain rank two free subgroup of MCG2(T ) with a standard element only depending on the ambient space. As a notable examples, we obtain a representation of th...

متن کامل

A pr 2 00 4 ( 1 , 1 ) - knots via the mapping class group of the twice punctured torus Alessia

We develop an algebraic representation for (1, 1)-knots using the mapping class group of the twice punctured torus MCG2(T ). We prove that every (1, 1)-knot in a lens space L(p, q) can be represented by the composition of an element of a certain rank two free subgroup of MCG2(T ) with a standard element only depending on the ambient space. As notable examples, we obtain a representation of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003